Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)
если к сторонам треугольника провести радиусы в точки касания с окружностью, они будут перпендикулярны сторонам треугольника...
в острых углах треугольника получится по два равных прямоугольных треугольника (их гипотенузы будут биссектрисами острых углов --- т.е. углы в них будут равные, и катеты равны радиусу вписанной окружности),
значит и вторые катеты будут равны... (на рисунке я их выделила одним цветом)))
а в прямом углу исходного треугольника радиусы вырежут квадрат)))
по данным катетам можно найти гипотенузу:
с^2 = 15*15*2 + 8*8*2 = 2*289
с = 17V2
и из рисунка очевидно равенство:
17V2 = (15V2 - r) + (8V2 - r)
2r = (15+8-17)V2
r = 3V2
искомое расстояние --- диагональ квадрата со стороной r...
x^2 = 2*r^2
x = rV2
x = 3V2*V2 = 6