формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.
радиус описанной около квадрата окружности = половине диагонали квадрата
по т.Пифагора: a^2 + a^2 = (2R)^2
2a^2 = 4R^2
a^2 = 2*R^2
площадь сегмента вычисляется по формуле
S = R^2 * (pi*альфа/180 - sin(альфа)) / 2
где альфа --- угол в градусах,
в нашем случае это угол между диагоналями квадрата
диагонали квадрата взаимно перпендикулярны
альфа = 90 градусов и sin(альфа) = 1
2*pi - 4 = R^2 * (pi / 2 - 1)
R^2 = 2*(pi-2)*2 / (pi-2) = 4
2*R^2 = 8 ---искомая площадь квадрата