АВ-касательная=12, АМ=8, продлеваем АО до пересечения с окружностью в точке К, ОМ=ОК=радиус=х, АВ в квадрате=АМ*АК, АК=АМ+ОМ+ОК=8+х+х=8+2х, 144=8*(8+2х), 144=64+16х, х=5=радиус=ОМ=ОК, проводим перпендикуляр в точку касания ОВ, треугольник АОВ прямоугольный, АО=АМ+ОМ=8+5=13, ОВ=радиус=5, cos углаАОВ=ВО/АО=5/13, ВМ в квадрате=ОВ в квадрате+ОМ в квадрате-2*ОВ*ОМ* cos углаАОВ=25+25-2*5*5*5/13=50-250/13=400/13, ВМ=корень(400/13)=20*корень13/13
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали.Точку пересечения диагоналей обозначим О.Проведем ОЕ перпендикулярно ВД.Соединим В и Е.В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. треугольник ВЕД - равнобедренный Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД)синус угла АВЕ=а:2а=0,5, отсюда следует что угол равен 30°Второй угол, на который диагональ ВД поделила угол АВС, равен угол СВЕ= 90°- 30°= 60°Остальные углы прямоугольника делятся диагоналями также на углы 30° и 60°.
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали. Точку пересечения диагоналей обозначим О. Проведем ОЕ перпендикулярно ВД. Соединим В и Е. В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. треугольник ВЕД - равнобедренный Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД) синус угла АВЕ=а:2а=0,5, отсюда следует что угол равен 30° Второй угол, на который диагональ ВД поделила угол АВС, равен угол СВЕ= 90°- 30°= 60° Остальные углы прямоугольника делятся диагоналями также на углы 30° и 60°.