В равнобедренном треугольнике высота на основание (она же и биссектриса и медиана угла против основания) равна: Н = √(а² - (в/2)²) = √(100 - 36) = √64 = 8. Точка пересечения биссектрис лежит на высоте Н на расстоянии ДО₂: ДО₂ = (в/2)*tg(A/2). tg(A/2) = √((1 - cos A) / (1+cos A)). cos A = (b/2) / c = (12/2) / 10 = 6 / 10 = 3 / 5. tg(A/2) = √((1-(3/5)( / (1+(3/5)) =√((2/5) / (8/5)) = √(1/4) = 1/2 Тогда ДО₂ = 6*(1/2) = 3. Медианы пересекаются в точке О₁, расстояние ДО₁ = (1/3) *Н = 8/3. Отсюда расстояние между точкой пересечения биссектрис и точкой пересечения медиан равно:3 - (8/3) = (9-8) / 3 = 1 / 3.
Допустим, что Вы имели в виду, что наклонные проведены к одной плоскости. Проведем из этой же точки перпендикуляр к данной плоскости и получим два прямоугольных треугольника, у которых гипотенузы a и b (наклонные), а катеты - перпендикуляр h к плоскости (общий) и проекции наклонных, равные 8см и 20см. тогда по Пифагору имеем: h²=a²-20² и h²=b²-8². Или a²-400=b²-64. Но нам дано, что a=b+8. Подставим эти значения в уравнение: (b+8)²-400=b²-64 или b²+16b+64-400=b²-64. отсюда 16b=272 и b=17см. тогда а=b+8=25см. ответ: длины наклонных равны 25см и 17см
Проверка: h=√(25²-400)=√225=15 и h=√(17²-64)=√225=15.