1) Пусть хсм - боковая сторона равнобедренного треугольника, тогда 2хсм - его основание. Известно, что периметр треугольника равен 36см. Составляю и решаю уравнение. 2х+2х=36 4х=36 х=36:4 х=9(см) - боковая сторона 2) 9·2=18(см) ответ: основание треугольника равно 18см, боковые стороны равны 9см.
Пусть, для простоты восприятия, трапеция будет прямоугольной, как это показано на рисунке, хотя на конечный ответ это не повлияет. Обозначим высоту трапеции ВЕ=Н, а высоту треугольника ВСМ ВР=h. Площадь трапеции: S=Н·(АД+ВС)/2=Н·(2+4)/2=3Н. Площадь тр-ка ВСМ: S(ВСМ)=ВС·ВР/2=2h/2=h. S(ВСМ):S(АМСД)=1:3=1x:3x, S(ВСМ)+S(АМСД)=1x+3x=4x=S ⇒ S(ВСМ)=S/4. h=3H/4 ⇒ h:H=3:4. Треугольники АВЕ и МВР подобны по трём углам, значит ВР/ВЕ=МР/АЕ, МР=ВР·АЕ/ВЕ=h·AE/H=3АЕ/4. АЕ=АД-ЕД=АД-ВС=4-2=2. МР=3·2/4=1.5. МТ=МР+РТ=МР+ВС=1.5+2=3.5 - это ответ.
В прямоугольном треугольнике больший угол равен 90°. Гипотенуза лежит против угла 90°. Против большего угла лежит большая сторона, • Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
основание 18
(9+9)+18=36