54
Объяснение:
По формуле
V=H×πR2
Объем цилиндра прямо пропорционален высоте и квадрату радиуса основания. Тем самым уменьшая высоту цилиндра в 2 раза, уменьшается и объем в 2 раза увеличивая радиус основания в 3 раза, объем цилиндра увеличивается в 3^2 раза, т.е. в 9 раз. Видно, что из-за высоты объем конуса уменьшится в 2 раза и увеличится в 9 раз из-за радиуса. Тогда получается:
(V/2)x9=(12/2)x9=54
х*9х=15*15,
9х(в квадр)=225,
х(в квадр)=25,
х=-5 - не является решением задачи
х=5
5*10=50(см)-длина диаметра окружности.
Объяснение:
Если хорда перпендикулярна диаметру, значит она точкой пересечения делится пополам, т.е. на отрезки по 15см. Диаметр-это то же хорда разделеная в 0тношении 1:9. Пусть 1 часть диаметра равна х, тогда длина всего диаметра равна х+9х=10х.
Если хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды (теорема об отрезках пересекающихся хорд.
а) У ромба все стороны равны из этого следует что P=a*4; 32см :4=8см
ответ: стороны ромба 8см
б) 2( x + 2x) = 24 ; 6x = 24 ; x = 4 ; a = 4одна сторона; b = 8 другая сторона.
в) Средняя линия треугольника равна половине соответствующей стороны, значит сторона равна 14см.
г) Пусть одна сторона будет х, а другая х+5, тогда: 2·(х+х+5)=50
2·(2х+5)=50 ; 4х+10=50 ; 4х=50-10 ; 4х=40 ; х=40:4 ; х=10
Значит одна сторона х=10 см, а другая х+5=10+5=15 см.
д) Делим ромб диагоналями на 4 равных прямоугольных треугольника.Т.к диагонали делят углы ромба пополам то в этих треугольничках один из углов 60:2=30*.Катет лежащий против угла в 30 градусов равен половине гепотенузы (16:4=4) => половина меньшей диагонали 4:2=2 => вся меньшая диагональ 2*2=4 см.
e) Средняя линии трапеции равна сумме длин двух оснований=> 10+22/2=32/2=16 см
ж) В прямоугольнике диагонали равны 18:2=9. ответ: Диагонали по 9 см.
и) Периметр 1*4=4 см; Площадь 1*1=1 см2
к) У квадрата 4 стороны. По свойству квадрата они равны между собой, поэтому: 64/4= 16 см - каждая сторона площадь квадрата равна произведению двух его сторон, поэтому площадь квадрата = 16*16=256 см2
Объем первого цилиндра равен πR²H=12
Объем второго цилиндра равен π(3R)²(Н/2)=4.5πR²Н=4.5*12=54