Прямая АЕ делит площадь параллелограмма ABCD в отношении 3:13.
Объяснение:
Треугольники BEF и AFD подобны по двум углам (∠AFD и ∠BFE - вертикальные, ∠BEF и ∠EAD - внутренние накрест лежащие при параллельных AD и BC и секущей АЕ. Коэффициент подобия
k = 3/8.
Следовательно, ВЕ/AD = 3/8 (соответственные стороны).
Площади треугольников АВЕ и ABD относятся как их основания (эти треугольники имеют одну высоту АН).
Итак, Sabe/Sabd = 3/8. Но Sabd = (1/2)*Sabcd, так как диагональ BD делит площадь параллелограмма пополам (свойство). Тогда Sabe/Sabсd = Sabe/(2*Sabd) = 3/16.
Sabe = (3/16)*Sabсd => Saeсd = 1 - 3/16 = (13/16)*Sabcd и
Sabe/Saесd = (3/16):(13/16) = 3/13.
Прямая АЕ делит площадь параллелограмма ABCD в отношении 3:13.
Рассмотрим прямоугольный треугольник, в котором отрезок, соединяющий центр верхнего основания с точкой окружности нижнего основания, - это гипотенуза, а высота и радиус основания цилиндра - это катеты.
sin 60 = R/8
R = sin60*8 = √3 /2 * 8 = 4√3
По теореме Пифагора:
H =
V = 16*3*4*π = 192π
ответ: 192π