Рассмотрим треугольники АОС он равно бедренный =>(это значёк отсюда следует) углы при основании равны. теперь рассмотрим треугольники АВО и ВСО они равныпо двум сторонам и углу между ними т.к. АВ=ВС по свойству равнобедренных треугольников Ао=ОС по условию угол ВАО = углу ВОС т. к. углы А И С равня по свой ству равнобедренного треугольника , а углы ОАС и ОСА равны из выше доказанного =>углы ВАО и ВСО тоже равны т. к треугольники равны соответственные элементы в них равны => угол АВО = углу ОВС =>ВД биссектрисса
1 площадь равна половине произведения катетов 20 ·15:2=150 2 площадь параллелограмма равна произведению основания на высоту поэтому площадь делим на сторону и получаем высоту 30:6=5 30:10=3 ответ 5 и 3 3. если мы раздвинем диагонали трапеции то получим прямоугольный треугольник, равновеликий трапеции площадь треугольника равна 4·10:2 =20 ответ 20 4 площадь ромба равна половине произведения его диагоналей 8·12:2=48 ответ 48 5 диагональ по теореме Пифагора √(10²+14²=√296=2√74 площадь равна10·14=140
Здесь все просто, единствення задача про трапецию - если нужен чертеж и обоснование напишите
пусть ABCDEFM - данная пирамида, О - ее центр, пусть К -середина AB
Тогда OM=16 MK=20
С прямоугольного треугольника OMK по теоереме Пифагора
OK=корень(MK^2-OM^2)=корень(20^2-16^2)=12
С равностороннего треугольника ABC
OA=OB=AB=2AK=2BK=2\3*корень(3)*12=8*корень(3)
Sбп=6*S (ABM)=6*1\2*AB*MK=3*20*8*корень(3)=480*корень(3)
ответ:480*корень(3)