Пусть дана равнобедренная трапеция ABCD, угол АВС=120 градусов. Проведем высоту ВК, то угол АВК=30 градусов, АК=(14-8):2=3 см. По свойству угла в 30 градусов: АВ=2*АК=6 см
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
При пересечении параллельных прямых секущей образуется 8 углов двух величин: соответственные углы ∠1 = ∠5 ∠3 = ∠7, а так как ∠1 = ∠3 как вертикальные, то ∠1 = ∠5 = ∠3 = ∠7 = х и соответственные углы ∠2 = ∠6 ∠4 = ∠8, а так как ∠2 = ∠4, как вертикальные, то ∠2 = ∠6 = ∠4 = ∠8 = у Сумма односторонних углов равна 180°, например ∠3 + ∠6 = 180° Т. е. х + у = 180°.
Сумма двух углов 72°. Так как сумма не 180°, это могут быть только равные углы: х = 72° : 2 = 36° ∠1 = ∠5 = ∠3 = ∠7 = 36° у = 180° - 36° = 144° ∠2 = ∠6 = ∠4 = ∠8 = 144°