Пусть к-коэффициент пропорциональности. Тогда стороны треугольника: 5к см, 8к см и 21 см. По т. косинусов составим уравнение: 21²=25к²+64к²-2х5кх4кхcos60 441=89к²-80к²х0,5 441=49к² к²=9 к=3. отр не подходит. Первая сторона 5к=5х3=15 см, вторая 8к=8х3=24 см.
Предположим ромб АВСД. Раз это ромб значит все его стороны равны 13 дм. Пускай диагональ ВД=24 дм. Проведем еще диагональ АС (ее и будем искать). Диагонали ромба в точке пересечения делятся пополам и под прямым углом. Назовем точку пересечения диагоналей О. Итак ВО=ОД=12дм. Рассмотрим треугольник ВОС. Угол О =90 градусов, следовательно по теореме Пифагора находим катет ОС=корень квадратный из (ВС^2-ОВ^2)=корень квадратный из (169-144)=корень квадратный из 25 =5(дм). Поскольку АС тоже диагональ ромба, то АО=ОС=5 дм. АС=АО+ОС=5+5=10 (дм). ответ 10 дм
Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.
По т. косинусов составим уравнение:
21²=25к²+64к²-2х5кх4кхcos60
441=89к²-80к²х0,5
441=49к²
к²=9
к=3. отр не подходит.
Первая сторона 5к=5х3=15 см, вторая 8к=8х3=24 см.