ответ: 2√5 / 5
Объяснение:
BD=25, DC=15, BC=25+15=40
Биссектриса угла треугольника делит сторону, к которой она проведена, на отрезки, пропорциональные прилегающим к ним сторонам. То есть, BD/DC = AB/AC (AB — гипотенуза, AC — катет). Тогда 25/15 = 5/3 (мы 25 и 15 сократили на 5). Получается, что и AB/AC как 5/3. Пусть гипотенуза AB=5х, а катет, AC=3x. За теоремой Пифагора: AB² = AC² + BC² ›› (5х)² = (3х)² + 40²;
25x² = 9x² + 1600;
25x² - 9x² = 1600;
16x² = 1600;
x² = 100;
x= √100 = ±10, однако -10 нам не подходит, поэтому х=10.
AC=3x=3*10=30;
В треугольнике ACD (угол С=90°): за теоремой Пифагора AD²=AC²+DC²;
AD=√(AC²+DC²);
AD=√(30²+15²)=√1125=15√5;
sinADC = AC/AD = 30 / 15√5 = 2√5 / 5.
Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия. Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.
Смотри рисунок.
Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).
Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:
О((-4+2)/2; (2-3)/2) или О(-1;-0,5).
R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.
ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.
Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.
В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0. => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).
180=1.8х
х=100
100-80=20градусов разность