Условие должно быть таким: Из точки А к данной плоскости альфа проведены перпендикуляр АА1 и две наклонные АВ и АС. СА1=4, угол АВА1=30°, угол АСА1=60°, а угол между наклонными 90°. Найти расстояние между основаниями наклонных. Решение. Из прямоугольного треугольника АСА1: tgC=AA1/A1C (отношение противолежащего катета к прилежащему). Тогда АА1=А1С*tg60° = 4√3. АС=√(АА1²+А1С²)=√(48+16)=8. (Пифагор) Из прямоугольного треугольника АВА1: АВ=2*АА1 = 8√3 (АА1 - катет против угла 30° и равен половине гипотенузы АВ). Из прямоугольного треугольника АВС (<ВАС=90° - дано): ВС=√(АВ²+АС²)=√(64+192)=16. ответ: расстояние ВС между основаниями наклонных равно 16.
Для решения подобных задач есть, если можно так сказать, классический Обозначим вершины трапеции АВСД. Из вершины С параллельно диагонали ВД проводится прямая до пересечения с продолжением АД в точке Е. ВС|| АЕ по условию, ВД||СЕ по построению. ⇒ ВСЕД - параллелограмм, ⇒ ДЕ=ВС=4 см. Тогда АД=5+4=9 см В треугольнике АСЕ известны три стороны. Площадь этого трегугольника равна площади данной трапеции. Действительно, Ѕ (АВСД)=Н*(ВС+АД):2 Ѕ (АСЕ)=Н*(ВС+АД):2 Вычислив по формуле Герона площадь треугольника АСЕ, тем самым найдем площадь трапеции АВСД. Ѕ=√(р*(р-а)*р-b)*(p-c)) где a,b,c - стороны треугольника, р - полупериметр. р=Р:2=(8+7+9):2=12 см Ѕ АВСД=√(12*4*5*3)=√(36*4*5)=12√5 см² или ≈26,8328 см² ---------Вариант решения. Можно опустить высоту СН, выразить ее квадрат по т. Пифагора из прямоугольных треугольников АСН и ЕСН и приравнять это значение, приняв АН=х, НЕ=9-хЗатем по т. Пифагора из любого из треугольников найти высоту и затем площадь трапеции. Этот более длинный и вычислений больше, но именно так, когда это необходимо, можно найти высоту.
Пусть у нас есть окружность с центром в т.О
Из т.А проводим хорду АВ перпендикулярную хорде АС
АС-АВ=7
Пусть АВ=х
АС=7+х
Рассмотрим треугольник АОВ, он равнобедренный. Проведем Из точки О перпендикуляр ОЕ к основанию АВ.
ОЕ=1/2АС=(7+х)/2
АЕ=1/2АВ=х/2
Из треугольника АОЕ по т.Пифагора выразим ОА (радиус):
ОА²=АЕ²+ОЕ²
6,5²=х²/4+(7+х)²/4
Домножим все на 4
169=х²+49+14х+х²
2х²+14х-120=0
х²+7х-60=0
По теореме Виета
х₁=-12 посторонний
х₂=5
АВ=5
АС=5+7=12