Треугольник АВС, АВ=13, ВС=14, АС=15, АН - высота на ВС, полупериметр(р)=(13+14+15)/2=21 площадь АВС=корень(р*(р-АВ)*(р-ВС)*(р-АС)=)корень(21*8*7*6)=84, 2*площадь=ВС*АН, 2*84=14*АН, АН=84*2/14=12
Например, можно так. построить циркулем и линейкой два перпендикулярных луча с общим началом. на одном отложить данный отрезок √5, а на другом — два раза √5. соединить полученные точки a и b. по теореме пифагора длина полученного отрезка ab будет равна 5. теперь через a надо провести произвольную прямую и отложить на ней циркулем пять раз некоторый отрезок, получим точки a1, a2, a3, a4, a5 (aa1=a1a2=a2a3=a3a4=a4a5). затем проводим прямую a5b и через точки a1, a2, a3, a4 параллельные ей. по теореме фалеса эти прямые разделят отрезок ab на пять равных частей, то есть отрезки длины 1.другой способ. строим отрезок длины 5 (см. предыдущее решение) . проводим две прямые, пересекающиеся в точке m. на одной из них в разные стороны откладываем отрезки ma = mb = √5. на другой прямой откладываем отрезок mc = 5. теперь описываем вокруг треугольника abc окружность и находим точку d пересечения окружности со второй прямой. по свойству хорд ma·mb = mc·md, поэтому md = 1.
Доказывать будем опираясь на признак параллелограмма (если у четырехугольника противолежащие стороны попарно параллельны, то это параллелограмм). Доказательство: 1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них АВ=СД (АВСД- пар-мм) АЕ=СК ( по условию) уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС следовательно ВЕ=ДК 2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них АД=СВ (АВСД- пар-мм) АЕ=СК ( по условию) уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС следовательно ВК=ДЕ 3) ЕВКД - параллелограмм по признаку из пп. 1;2