Пусть дан треугольник ABC,где угол А = 45 °. ВН-высота ;
АН = 6 (см) , НС = 10 (см). Найдём S треугольника.
Рассмотрим треугольник АВН : угол А = 45 ° (по условию), значит угол АВН = 45 °. Следовательно треугольник равнобедренный и АН = НС = 6 (см) ,найдём АС.
АС = АН + НС = 6 + 10 = 16 (см)
Рассмотрим ВН: в равнобедренному треугольнике высота, проведенная к основанию, является медианой и биссектрисой.
Найдём высоту по формуле ВН=1/2*АС.
ВН = 1/2 * 16 = 8 (см)
S тр. = S= 1/2 АС * ВН
S тр. = 1/2 * 16 * 8 = 64 (см)
1) пусть H- основание перпендикуляра опущенного из М на плоскость ЕВК, по гипотенузам и общему катету треугольники МВH,MKH-конгруентны, а значит BH=KH, значит вершина равнобедренного тругольника ВМК лежит на серединном перпендикуляре к ВК, т.е на диагонали ЕP таким образом МH , перпендикулярная всей плоскости ЕВК и прямой ВК в частности принадлежит EMP, вторая прямая перпендикулярная BK- это сама ЕP, по двум прямым, вся плоскость ЕМP перпендикулярна ВК...
2) сторона ВС перпендикулярна АВ и кроме того МА- по условю задачи, значит ВС перпендикулярна всей плоскости МАВ и отрезку МВ в частности, что и доказывает требуемое...