Объяснение:
Определение
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна каждой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Теорема 1
ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Доказательство:
Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точку А пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости .
Проведем произвольную прямую х через точку А в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х.
Отложим на прямой а от точки А в разные стороны равные отрезки АА1 и АА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2). по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам.
Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХ и А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямая а перпендикулярна плоскости . Теорема доказана.
Объяснение:
4.
Если основание а= 3,83 см, то
Боковая сторона b=7,91 см
ответ : a=3,83 cм b=7,91 см
Если а=7,91 см, то b=3,83 cм, но такого тр-ка не существует т, к сумма двух любых сторон должна быть меньше третьей :
3,83+3,83<7,91
5.
Тр-кАВС <С=90 <А=60 СМ высота ВС=8,7 см
Найти : СМ
Решение
<В=180-<С-<А=180-90-60=30
Катет лежащий против угла 30 равен половине гипотенузе
СМ=1/2×ВС=1/2×8,7=4,35 см
6.
Тр-кАВС <С=<СВN=81
<CBM=<ABM+27
Найти <А <В
Пусть <АВМ=х
<СВМ=х+27
Сумма смежных углов равен 180
<СВМ+<СВN=180
X+27+81=180
X=180-81-27=72
<ABM=72
<CBM=72+27=99
<ABC=<CBM-<ABM=99-72=27
<A=180-<ABC-<C=180-27-81=72
ответ : <А=72 <АВС=27 <С=81