В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
1) 90°-45°=45°, следовательно треугольник АКВ-равнобедренный.
АВ=ВК=10 см;
ВС=10+5=15 см
периметр 10+10+5+5=50 см
2) Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º.
пусть ∠В=х°. тогда ∠С=50+х
х+х+50=180
2х=130
х=65° (∠В)
∠С=65+50=115°
Углы параллелограмма 115°, 115°, 65°, 65°.
3) Диагональ ромба делит угол пополам
120°:2=60°
Меньшая диагональ ромба образовывает два равных равносторонних треугольника, с углами 60°.
Стороны ромба равны, то есть 4 см.
Если треугольники равны, то и меньшая диагональ тоже 4 см.
ответ меньшая диагональ ромба 4 см