проведём произвольную прямую и отметим на ней точку. построим прямую, перпендикулярную к нашей прямой и проходящую через отмеченную точку. Для этого строим окружность произвольного радиуса с центром в отмеченной точке. Эта окружность пересекает прямую в двух точках. Замеряем циркулем расстояние между этими точками и проводит окружности этого радиуса из точек пересечения и окружности. Эти окружности пересекаются в двух точках, проведём прямую через эти точки и получим две перпендикулярные прямые. на любой из них откладываем от точки пересечения длину катета и строим окружность из конца этого катета радиусом равным длине гипотенузы. Отметим точку пересечения этой окружности и перпендикулярной прямой, соединим её и конец катета, получим прямоугольный треугольник
1)пусть треугольник будет ABC с основанием BC и сторонами АВ=АС, проведем в этом треугольнике высоту AD на основание BC, тогда получается прямой угол D
2)т.к в равнобедренном треугольнике высота является медианой и биссектрисой, то получаем, что DB=CD=30/2=15см
3)высота AD^2=AB^2 - BD^2 = 25^2 - 15^2 = 625 - 225=400
AD=20см(если что, то это по теореме пифагора, а ^ - значек, обозначающий в квадрате)
4)тангенс - это отношение противолежащего катета к прилежащему, значит tg угла ABC =AD/BD = 20/15 = 4/3
1. Сумма углов треугольника равна 180. Третий угол равен 180-57-44=79.
2. Сумма смежных углов также равна 180. 180-111=69.
3. Два варианта. В равнобедренном треугольнике углы при основании равны. Если дан угол при основании, то третий угол равен 180-65*2=50. Если дан угол напротив основания, то два других угла равны (180-65)/2=57,5
4. АС=17*2=34, ВС=АС-10=34-10=24. Р=17+34+24=75