СН - высота, проведенная к гипотенузе прямоугольного треугольника АВС. В прямоугольном треугольнике ВСН (<H=90°) угол НСВ равен 90° - <B (так как сумма острых углов прямоугольного треугольника равна 90°). Точно так же в прямоугольном треугольнике АВС (<С=90°) угол САВ равен 90° - <B. Следовательно, прямоугольные треугольники САН и ВСН подобны по острому углу (первый признак), так как <CAH=<HCB=(90° - <B) (доказано выше). Кроме того, треугольники САН и НСВ подобны исходному треугольнику АВС по этому же острому углу.
Что и требовалось доказать.
Обозначения во вложении.
Проведем в шестиугольнике все большие диагонали.
Т.к. шестиугольник правильный, то:
все его стороны равны, т.е. AB=BC=CD=DE=EF=FA
Большие диагонали пересекаются в одной точке О (центр описанной окружности)
Большие диагонали равны между собой(AD=BE=CF) и в точке О делятся пополам (AO=BO=CO=DO=EO=FO).
Исходя из этого, треугольники AOB, BOC,COD,DOE,EOF,FOA равны между собой по трем сторонам и являются равносторонними. Угол AOB=360/6=60 градусов. Площадь правильного треугольника равна S=a^2*(корень квадратный из 3)/2
а=2, S=корень квадратный из 3
Площадь шестиугольника=6*S=6*(корень квадратный из 3)