На окружности расположены 9 точек, которые делят окружность на равные дуги. определи угол, который образуют хорды, проведённые из общей точки к ближайшим соседним точкам.
В прямоугольном треугольнике больший угол равен 90°. Гипотенуза лежит против угла 90°. Против большего угла лежит большая сторона, • Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
1)∠А=50°, ∠В=х, ∠С=12х ∠А+∠В+∠С=180 50+х+12х=180 13х=130°, х=10° ∠В=10°, ∠С=120° 2) ∠С=90° , ∠В=35°, ∠А=90°-35°=55° ΔАСD, ∠D=90°, ∠ACD=35° 3) ΔABC, ∠A=∠B - 60°, ∠C=2*∠A, ∠A=x, ∠B=x+60, ∠C=2x x+(x+60)+2x=180 4x=180-60=120 x=120÷4 x=30 ∠A=30°, ∠B=30°+60°=90°, ∠C=30°*2=60° 4) Высота разбивает равнобедр. треугольник на 2 прямоугольных треугольника. Высота является в полученном треугольнике - катетом и она в 2 раза меньше боковой стороны т.е. гипотенузы, поэтому катет лежит против угла 30°. Значит углы при основании равнобедренного треугольника по 30°, а угол при вершине 180°-30°-30°=120° ответ: наибольший угол при вершине равнобедренного треугольника.
15 градусов гыгыыгыыгыгыггыгыгыы