Авсд - параллелепипед . м принадлежит сд, см относиться к мд, как 2 к 3. прямая ам пересекает луч вс в точке т, а площадь треугольника стм = 8. найти площадь параллелепипеда авсд. !
Осталось только выяснить, сосуд имеет форму конуса вершиной вверх или вершиной вниз. V₀ = 1600 мл 1. Конус в классической ориентации - основание внизу, вершина вверху. Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2 Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k² Объёмы относятся как k³ Объём верхней пустой части сосуда составит V₁ = V₀*k³ = 1600/8 = 200 мл Объём жидкости, налитой до половины составит V₂ = V₀-V₁ = 1600-200 = 1400 мл 2. Конус перевёрнут - основание вверху, вершина смотрит вниз В этом случае заполнен только объём V₁ из пункта V₁ = 200 мл
. Доказательство того, что диагональ делит параллелограмм на два равных треугольника: Треугольники будут равны по трём сторонам - диагональ (общий элемент) и параллельные стороны (они равны).
2. Сама задача: 1. ВС=12+7= 19см. ВС=АД=19см. (т.к. противоположные стороны параллелограмма равны) 2. Треугольник АВЕ - равнобедренный с основанием АЕ. (т.к. накрест лежащие углы равны, а биссектриса делит угол на две равные части, то есть все углы, касающиеся биссектрисы, равны) АВ=ВЕ=12см. 3. Периметр параллелограмма: 2х(АВ+ВС)=2х(19+12)=62см.
S=2(ab+bc+ac)
А если все перемножить то получим объем.