ВС=СD.
∆ ВСD - равнобедренный угол СВD=углу СDВ.
В то же время ∠СВО=∠НDО как накрестлежащие при пересечении параллельных прямых секущей, углы при О - равны как вертикальные. прямоугольные треугольники ВСО и НDО подобны.
HD:ВС=ОH:СО=12\20=3/5
Примем ВС=СD=а.
Тогда НD=3а\5
Из ∆ СНD по т.Пифагора
СD²=СН²+НD²
а²=1024+9а²\25
16а²\25=1024
Разделим обе стороны уравнения на 16, извлечем корни:
а\5=8
а=40 см
АD=а+3а\5=1,6а
АD=40х1,6=64 см
S=(BC+AD)хCH:2=104х(20+12):2=1664 см²
х-это умножение)
25°;155°;25°;155°
Объяснение:
При пересечении двух прямых образуются следующие углы: вертикальные и смежные углы.
Сумма смежных углов равна 180°. Поскольку сумма углов не 180°, это вертикальные углы.
Вертикальные углы равны между собой.
<2=<4 (см. рисунок)
<2+<4=310°
Найдем один из вертикальных углов.
310°:2=155° градусная мера угла <2; и градусная мера угла <4.
<2 и <3 смежные углы, их сумма равна 180°.
<2+<3=180°.
Найдем <3.
<3=180°-<2=180°-155°=25°
<3=<1, так как углы вертикальные.
ответ: <1=25°; <2=155°; <3=25°; <4=155°