В треугольнике ABC, AB = BC. Медианы треугольника пересекаются в точке O, OA = 5, OB = 6. Найдите площадь треугольника ABC.
============================================================
точка О - точка пересечения медиан ( см приложение )По свойству пересечения медиан в ΔАВС ВО:ОЕ = 2 : 1⇒ ОЕ = ВО/2 = 6/2 = 3 По свойству равнобедренного треугольника ВЕ⊥АС, ВЕ - медиана, высота, биссектрисаВ ΔАОЕ: по теореме ПифагораАЕ² = АО² - ОЕ² = 5² - 3² = 25 - 9 = 16АЕ = 4АС = 2•АE = 2•4 = 8Значит, S abc = BE•AC/2 = 9•8/2 = 36ОТВЕТ: S abc = 36Площадь треугольника S 6
Периметр треугольника P 12
Угол треугольника α 53.13
Угол треугольника β 36.87
Угол треугольника γ 90
Высота треугольника ha 2.4
Высота треугольника hb 3
Высота треугольника hc 4
Медиана треугольника ma 2.5
Медиана треугольника mb 3.606
Медиана треугольника mc 4.272
Биссектриса треугольника la 2.424
Биссектриса треугольника lb 3.354
Биссектриса треугольника lc 4.216
Радиус вписанной окружности r 1
Радиус описанной окружности R 2.5
Внешний угол треугольника α 306.87
Внешний угол треугольника β 323.13
Внешний угол треугольника γ 270
Средняя линия треугольника mla 2.5
Средняя линия треугольника mlb 2
Средняя линия треугольника mlc 1.5