1.в единичном кубе найдите расстояние от точки d до плоскости cad1. 2.в единичном кубе найдите расстояние между прямыми ad и ca1 если можно, с рисунком,
Соединим эти точки получим пирамиду . , опустим высоту , от точки , на плоскость , так же опустим высоту от вершины оснований равнобедренного треугольника на основание , тогда ее высота равна , значит точка точка пересечения диагоналей квадрата
В равнобедренной трапеции АВСД (АВ=СД) большее основание АД=25, диагональ ВД перпендикулярна АВ (<АВД=90°). Боковая сторона АВ в 1,25 раз больше высоты ВН, опущенной на основание АД: АВ=1,25ВН. Получается, в прямоугольном ΔАВД высота ВН, опущенная из прямого угла. Из прямоугольного ΔАВН ВН=АВ*sin A, откуда sin А=ВН/АВ=ВН/1,25ВН=0,8. Зная синус угла А, в ΔАВД найдем ВД=АД*sin А=25*0,8=20 АВ=√АД²-ВД²=√25²-20²=√225=15 Тогда ВН=15/1,25=12. Найдем АН=√АВ²-ВН²=√15²-12²=√81=9. Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. Значит АН=(АД-ВС)/2. Отсюда ВС=АД-2АН=25-2*9=7 Площадь трапеции S=(АД+ВС)*ВН/2=(25+7)*12/2=192 ответ: 192
Центр окружности лежит на биссектрисе угла. Радиусы окружности, проходящие через точки касания сторон угла с окружностью, будет перпендикулярны к сторонам угла. Таким образом, биссектриса, касательные (стороны угла от вершины до точек касания с окружностью) и радиусы образуют два одинаковых прямоугольных треугольника. И при любом положении угла относительно окружности (при вращении угла вокруг окружности) все размеры этих треугольников будут оставаться неизменными. Следовательно вершина угла опишет окружность , центр которой совпадет с центром заданной окружности, и радиусом равным расстоянию от вершины угла до центра окружности.
, опустим высоту , от точки , на плоскость , так же опустим высоту от вершины оснований равнобедренного треугольника на основание , тогда ее высота равна ,
значит точка точка пересечения диагоналей квадрата
значит высота ,расстояние , так же равна
Точно такими же методами , ответ к второй задачи