Через вершину с паралелограмма проведена прямая пересекающая сторону аd в точке е, а в продолжении стороны ва- в точке f. докажите что треугольники ecd fbc подобны!
Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
(угол B равен углу D, т.к. они противоположные в параллелограмме; ED:BC=DC:FB)