М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dzikita2
dzikita2
08.08.2021 06:15 •  Геометрия

Точка а лежит в плоскости, точка в - на расстоянии 12,5 м от этой плоскости. найдите расстояние от плоскости до точки м, делящей отрезок ав в отношении ам: мв=2: 3 с тертежом и нормальным решением .: )

👇
Ответ:
MaRiNa4ToP
MaRiNa4ToP
08.08.2021
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость.
Пусть перпендикуляр из В будет ВС, из М - МН. (рис.1 вложения)
А, Н и С - лежат на одной прямой АС, т.к. являются точками проекции АВ на плоскость. 
Соединим А, С и В.
∆ АВС и ∆ АМН - прямоугольные и подобны т.к.имеют общий острый угол ( признак подобия прямоугольных треугольников). 
Примем  АМ=2а, АВ=2а+3а=5а. 
Тогда  k=MH:AB=2/5⇒
5 MH=2 AB⇒
5 MH=2•12,5=25 м
MH=5 м

В условии не указано, что АВ - наклонная. Поэтому возможно, что АВ - перпендикуляр к плоскости. (рис.2 вложения)
Тогда  АВ=12,5, а расстояние от плоскости до точки М=AM. 
АВ=12,5=5 а⇒
а=12,5:5=2,5
АМ=2•2,5=5 м
4,6(73 оценок)
Открыть все ответы
Ответ:
kolodina10
kolodina10
08.08.2021

Объяснение:

Значения тригонометрических функций (которые нужно знать наизусть)

 

 

30  °   45  °  

60  °  

sin  α     12   2–√2   3–√2  

cos  α   3–√2   2–√2   12  

tg  α     3–√3   1   3–√  

 sinα=противолежащий катетгипотенуза sinα=ac;cosα=прилежащий катетгипотенуза cosα=bc;tgα=противолежащий катетприлежащий катетtgα=ab.  

Как выбрать правильную функцию?

Если используются только катеты, применяется tg.

 

Если используется гипотенуза (дана или надо вычислить), то применяются sin или cos.

 

Если используется противолежащий катет (дан или надо вычислить), то применяется sin.

 

Если используется прилежащий катет, то применяется cos.

 

Если в треугольнике даны оба острых угла, лучше на рисунке отметить только один угол, чтобы однозначно понять, где прилежащий и где противолежащий катеты.

 

Гипотенуза всегда в знаменателе.

 

 

 

 

 

 

 

 

 

 

Величины остальных углов можно найти в таблице или вычислить с калькулятора.

4,5(58 оценок)
Ответ:
Saxarok2018
Saxarok2018
08.08.2021

Внизу

Объяснение:

Подобны, Если пирамида пересечена плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделены на пропорциональные части;

2) многоугольник сечения подобен основанию;

3) площади основания и сечения относятся, как квадраты их расстояний от вершины.

Доказательство:

1) Так как \beta\||\alpha и они пересечены плоскостью грани ASB по прямым A_{1}B_{1} и AB , то A_{1}B_{1}||AB. Аналогично получим, что B_{1}C_{1}||BC, C_{1}D_{1}||CD и т. д. и B_{1}H_{1}||BH. На сторонах углов ASB, BSC, CSD, ... , BSH получим пропорциональные отрезки:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B}; \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C}; \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D}; \ldots  ; \frac{SB_{1}}{B_{1}B} = \frac{SH_{1}}{H_{1}H}.

Отсюда:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D} =\ldots= \frac{SH_{1}}{H_{1}H}.

2) \triangle{A_{1}SB_{1}}\sim\triangle{ASB}; \triangle{B_{1}SC_{1}}\sim\triangle{BSC}; \triangle{C_{1}SD_{1}}\sim\triangle{CSD}

и т.д. Значит

\frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA}; \frac{B_{1}C_{1}}{BC} = \frac{SB_{1}}{SB}; \frac{C_{1}D_{1}}{CD} = \frac{SC_{1}}{SC} и т.д.

Но правые отношения в этих пропорциях равны между собой на основании только что доказанной первой теоремы, поэтому равны между собой и левые отношения:

\frac{A_{1}B_{1}}{AB} = \frac{B_{1}C_{1}}{BC} = \frac{C_{1}D_{1}}{CD} и т.д.

Т. е. стороны многоугольников A_{1}B_{1}C_{1}D_{1}E_{1} и ABCDE пропорциональны. Соответствующие углы этих многоугольников равны. Следовательно, A_{1}B_{1}C_{1}D_{1}E_{1} \sim ABCDE.

3) Пусть Q и Q' — площади основания и сечения. Имеем:

\frac{Q}{Q'} = \frac{A_{1}B_{1}^2}{AB^2};

Но \frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA} = \frac{SH_{1}}{SH} (по теореме 1), поэтому

\frac{Q}{Q'} = \frac{SH_{1}^2}{SH^2}.

4,8(59 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ