по теореме Фалеса прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам
А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.
Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.
Периметр четырехугольника сумма длин всех его сторон
поэтому периметр полученного четырехугольника равен
a/2+a/2+b/2+b/2=a+b
ответ: a+b
3.
BAD = 65
BDC = 90
BCA =65
Объяснение:
3.
поскольку угол BDC образован основанием равнобедренного треугольника и медианой, проведенной к ней, то, следуя из этого мы можем сделать вывод, что угол BDC = 90 градусов (по свойствам равнобедренного треугольника)
угол BAD = 180 - уг1 = 180 - 115 = 65
угол BCA = угBAD = 65 градусов (как углы, прилежащие к основанию равнобедренного треугольника)
4.
рассмотрим треугольники DEK и FEK. в них DE = EF как стороны равнобедренного треугольника, прилежащие к основанию, угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла), а угEDK = угEFK как углы при основании равнобедренного треугольника, следовательно, треугольники DEK и FEK равны по двум углам и стороне между ними, что и требовалось доказать.
(не очень понял формулировку данной задачи, но если имелось ввиду доказать равность углов а не треугольников, то можете просто сказать что угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла))
второй 90 как прямоугольный
сумма углов в треугольнике = 180 градусов
третий 180-90-30=60 градусов