Высота основания правильной треугольной пирамиды равна 3, высота самой пирамиды – √3 см. Найдите площадь полной поверхности пирамиды.
Высота основания правильной треугольной пирамиды равна 3, высота самой пирамиды – √3 см. Найдите площадь полной поверхности пирамиды.
Определение:
Правильная треугольная пирамида - это пирамида, основанием которой является правильный треугольник, все боковые грани равнобедренные треугольники, а вершина проецируется в центр основания.Площадь полной поверхности равна сумме площади основания и площади боковой поверхности.
Для решения нужно знать сторону основания и апофему ( высоту боковой грани).
См. рисунок, данный в приложении.
По условию АН=3 см, МО=√3 см
Центр основания пирамиды является центром вписнной в нее окружности с радиусом ОН.
Радиус вписанной в правильный треугольник окружности равен 1/3 его высоты.
r=ОН=1/3 АН=1 (см)
⊿ МНО прямоугольный, МH=√(MO² +OH² )=√4
МН=2 (см)
Все углы ∆ АВС=60°
ВС=АС=АВ=АН:sin 60°
BC=3•2:√3=2√3
По формуле площади правильного треугольника S=a²√3):4
S (осн)={(2√3)²•√3}:4=3√3 (см²)
Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
S (бок)=МН•(АВ+ВС+АС):2
S (бок)=2•3•(2√3):2=6√3 (см²)
S (полн)=3√3+6√3= 9√3≈15,588 см²
В равнобедренном треугольнике углы при основании равны, значит <C=<A=30°. Угол при вершине равен 180° - 2*30° =120°.
Cos120 = Cos(180-60) = -Cos60 = -1/2.
По теореме косинусов: ВС= √(АВ²+АС²-2*АВ*АС*Сos120) =
√(128+128*1/2) = √(128+128*1/2) =√192 = 8√3.
DE=4√3, так как DE - средняя линия треугольника АВС (дано).
Скалярное произведение векторов "a" и "b": |a|*|b|*Cos(a^b).
В нашем случае Cos(AB^AC)=Cos120)= -1/2, Cos(AB^BC)=Cos30=1/2, Cos(BC*DE) = Cos0 =1. Тогда:
а) (АВ*АС) = 8*8*(-1/2) = -32.
б) (АВ*ВС) = 8*8√3*(√3/2) = 96.
в) (ВС*DE) = 8√3*4√3*(1) = 96.