V=1/3*S*h, где V - объём пирамиды, S - площадь основания, h - высота. Зная объём и высоту, можно найти площадь основания, она равна 480/(3*5)=32. Так как основание пирамиды - квадрат, а его площадь равна 32, сторона равна √32=4√2. Диагональ квадрата в √2 раз больше его стороны, тогда диагональ равна 8. Половина диагонали равна 4. Рассмотрим теперь треугольник, образованный половиной диагонали основания, боковым ребром и высотой. Он прямоугольный, так как высота перпендикулярна диагонали основания. В нём известны длины обоих катетов, значит, по теореме Пифагора можно найти гипотенузу - √25+16=√41, которая и будет боковым ребром.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
1) Отрезки MN и KT пересекают во внутренней точке X так, что угол MXK = 60. Найдите меры углов MXT, TXN, KXN. <МХК=<TXN=60 град (вертикальные) <МХК+<KXN=180 град (смежные углы) <KXN=180 -60=120 град <KXN=<MXT=120 град ответ: <МХТ=120 град, <ТХN= 60 град, <КXN=120 град.
2) Найдите меры двух смежных углов, если один из них втрое больше другого. х - один из смежных углов 3х - второй из смежных углов 3х+х=180 4х=180 х=180 : 4 х=45 град - первый угол 45*3=135 град - второй угол ответ: 45 град, 135 град.