М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
haylayjonesty
haylayjonesty
07.08.2021 08:13 •  Геометрия

Втреугольнике авс угол с = 90°, ас = вс, ав = 16. отрезок сd перпендикулярен к плоскости авс и сd = 6. найдите расстояние от точки d до прямой ав.

👇
Ответ:
goooll
goooll
07.08.2021

Попытаюсь решить на уровне 9 класса.

Кротчайшее расстояние от точки С до прямой AB будет лежать на высоте треугольника ABC - CH. Для точки D, соответственно кратчайшим расстоянием до AB будет расстояние DH. Найдём катет прямоугольного треугольника CB обозначив его за x: x^2 + x^2 = 16^2. x = 8\sqrt{2}. Далее в прямоугольном треугольнике СHB найдём СH: \sqrt{(8\sqrt{2})^{2} - 8^{2} } = 8. Далее найдём в прямоугольном (по условию) треугольнике CDH расстояние DH: \sqrt{6^{2} + 8^{2} } = 10

ответ: 10

4,8(83 оценок)
Ответ:
Yulia1393
Yulia1393
07.08.2021
Для решения данной задачи, давайте разделим ее на несколько шагов:

Шаг 1: Найдем длину отрезка сс'.
Для этого воспользуемся свойством прямоугольного треугольника: гипотенуза в квадрате равна сумме квадратов катетов.
Имеем:
ав = 16 - длина катета,
ас = 16 - длина второго катета,
Зная, что угол с в треугольнике авс равен 90°, можем применить теорему Пифагора:
16^2 = (ав)^2 + (ас)^2
256 = (ав)^2 + (16 - ав)^2
256 = ав^2 + 256 - 32ав + ав^2
ав^2 - 32ав = 0
ав (ав - 32) = 0

Значит, ав = 0 или ав = 32.
Учитывая, что ав - это длина стороны треугольника, ав не может равняться 0.
Следовательно, ав = 32.

Шаг 2: Найдем длину отрезка с'д.
Из условия задачи известно, что отрезок сд перпендикулярен к плоскости авс и его длина равна 6.

Шаг 3: Найдем длину отрезка дd'.
Чтобы найти расстояние от точки d до прямой ав, мы можем найти длину отрезка дд', где точка d' - это точка пересечения перпендикуляра с прямой ав.
Заметим, что треугольник авс и треугольник авс' являются подобными.
Это означает, что их соответствующие стороны пропорциональны.
Используем это свойство для нахождения длины отрезка дд':
ав / авс = авс' / авс
32 / 16 = авс' / 16
авс' = 32

Таким образом, длина отрезка дд' также равна 32.

Шаг 4: Найдем расстояние от точки d до прямой ав.
Расстояние от точки d до прямой ав равно длине отрезка дд' минус длина отрезка сд.
32 - 6 = 26

Ответ: Расстояние от точки d до прямой ав равно 26.
4,5(33 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ