В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²
Пусть S - площадь треугольника АВС.
Необходимо найти отношение площадей треугольника АРМ и четырехугольника ВРМС.
Сделаем рисунок и соединим В и М отрезком ВМ.
Отношение площадей треугольников с равными высотами равно отношению их оснований.
Высота ∆ АВМ и ∆ АВС одна и та же.
Основания их относятся как АМ:АС = 3:(3+5) ,
Площадь ∆ АВМ равна 3/8 площади ∆ АВС, т.е. ³/₈S
На том же основании площадь ∆ АРМ равна 5/9 площади ∆ АВМ ( у них одна и та же высота из М к АВ) и равна ⁵/₉ от ³/₈S
Площадь ∆ АРМ=¹⁵/₇₂S=⁵/₂₄S
Площадь четырехугольника ВРМС равна
S(ABC) - ⁵/₂₄(S(ABC) =¹⁹/₂₄ S(∆ ABC)
Площади ∆ АРМ и четырехугольника ВРМС относятся как
(⁵/₂₄S):¹⁹/₂₄ S)=5:19