У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Дано: равнобедренная трапеция АВСD. АВ=СD Меньшее основание ВС=15 см большее основание AD=49 см острые углы D=A=60 град. Найти: Р=? Решение: Опустим перпендикуляры к большему основанию СN и ВM. МN=BC=15 cм, АМ=АN=(49-15):2=17 см Рассмотрим треугольник АВМ. Угол А=60, следовательно угол В=30, т.к. сумма острых углов прямоугольного треугольника=90 град. Катет лежащий против угла в 30 град.= половине гипотенузы, значит АВ=2*13=34. Теперь известны все стороны трапеции АВ=СD=34, ВС=15, АD=49 Р=34*2+15+49=132 см ответ: периметр трапеции равен 132 см.
Объем равен ·8²·10=640см³