На сторонах угла а, равного 43 градуса, отмечены точки в и с, а внутри угла точка d, так что угол abd =137 градусов, угол bdc =45 градусов. найдите угол acd
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу. h=sqrt 2*8= 4 Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20 sqrt-корень с-гипотенуза 2) Тангенс по определению отношение катетов. Там дробь, но она сокращена. По теореме Пифагора. Сумма квадратов катетов равна квадрату гипотенузы. Чтобы получилось 51^2 8 и 15 - мало 16 и 25 - мало 24 и 45 - как раз. 24^2+45^2=51^2 576+2025=2601 ответ: 24 и 45
Поскольку в равнобедренном треугольнике АВС углы при основании ВС равны, то /_В = /_С, но это значит, что и внешние углы при вершинах В и С равны между собой: /_АВВ1 = /_АСС1 И половинки этих внешних углов, полученных при проведении биссектрис ВВ2 и СС2 также равны между собой /_В2ВВ1 = /_С2СС1. Биссектрисы В2В и С2С пересекаются в точке О. /_ ОВС = /_В1ВВ1 как вертикальные, и /_ОСС1 = /_С2СС! как вертикальные. Но поскольку /_В2ВВ1 = /_С2СС1, то и /ОВС = /_ОСВ, и треугольник ОВС - равнобедренный с основанием ВС. Следовательно, ОВ = ОС как боковые стороны равнобедренного тр-ка ОВС, что и требовалось доказать.