Дуга окружности с центром в точке о соответствует центральному углу,равному 120. известно,что длина окружности с центром в точке о1 равна длине этой дуги. найдите отношение радиусов окружностей
Обозначим R - радиус дуги, а r - радиус окружности, L - длина дуги и окружности (поскольку они равны). Длина дуги , отсюда . Длина окружности , . Отношение радиусов:
Из условия очевидно, что точка L, лежит не на боковой стороне трапеции, а на основании трапеции... т.к. AD--боковая сторона, то АВ и CD -- основания, CL || AB || CD и получилось, что CL||CD и у этих прямых есть общая точка С ((они пересекаются))) итак, AD --основание... AL=LD=BC, т.к. в параллелограмме противоположные стороны равны... из известной площади трапеции можно найти высоту... S = (BC+AD)*h/2 = 90 (BC+AD)*h = 180 h = 180 / (BC+AL+LD) = 180 / (3*BC) = 60 / BC S(ABCL) = h*BC = 60*BC/BC = 60 можно и иначе порассуждать: диагональ параллелограмма АС разбивает параллелограмм на 2 равных треугольника -- S(ABC)=S(ACL) а медиана CL разбивает треугольник АСD на 2 РАВНОВЕЛИКИХ (но НЕ равных---т.е. равных по площади))) треугольника S(ACL)=S(CLD) получили, что вся трапеция разбивается на 3 равных по площади треугольника))) а площадь параллелограмма = двум площадям таких треугольников... 90*2/3 = 30*2 = 60
Продолжив перпендикуляр, опущенный к диаметру, до его пересечения с окружностью по другую сторону диаметра, получим хорду, два отрезка которой равны по √21 каждый. Диаметр окружности тоже хорда, только самая большая.
При пересечении двух хорд произведения их отрезков, которые получаются точкой пересечения, равны.
Пусть один отрезок диаметра будет х, тогда второй будет (d-x) d=2r Найдем диаметр. из площади круга. S=πr² r²=S:π r²=25 r=√25=5 d=10 Произведение отрезков хорды равно (√21)·(√21)=21 см Произведение отрезков диаметра равно х(10-х) см И эти произведения равны. 10х - х²=21 Домножим всё на -1 и перенесем все в левую сторону уравнения. х² -10х+21=0 Решив квадратное уравнение, получим два корня х₁=7 х₂=3 Оба корня подходят. Отрезки диаметра, на которые его делит перпендикуляр. равны 7см и 3 см.
Длина дуги ,
отсюда .
Длина окружности ,
.
Отношение радиусов: