Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
1) центр вписанной в треугольник окружности-точка пересечения биссектрис, т.к. треугольник равнобедренный, биссектриса к основанию будет и высотой, часть этой высоты будет радиусом окружности, т.к. радиус, проведенный в точку касания, перпендикулярен касательной)) т.е. высота треугольника известна, осталось найти основание... известно: биссектриса угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам. по т.Пифагора можно найти основание))) 2) сумма неравных углов параллелограмма=180° (это односторонние углы), противоположные углы параллелограмма равны))) если обозначить угол (х), например, то второй острый угол прямоугольного треугольника, образованного высотой параллелограмма, будет =90°-х из несложного равенства становится очевидно, что угол между высотами равен углу параллелограмма))) площадь параллелограмма=произведению двух сторон на синус угла между ними.