Одна из сторон треугольника равна 25 см, а другая сторона делится точкой касания вписанной окружности на отрезки длиной 22 см и 8 см, считая от конца первой стороны. найдите радиус вписанной окружности.
треугольник АВС, АС=25, К- точка касания окружности на ВС, КС=22, ВК=8, ВС=ВК+КС=8+22=30, Н-точка касания на АС, КС=СН =22 - как касательные, проведенные из одной точки, АН=АС-СН=25-22=3, Л-точка касания на АВ, АН=АЛ=3- как касательные..., ВК=ВЛ=8-как касательные..., АВ=АЛ+ВЛ=3+8=11, поупериметр (р)=(АВ+ВС+АС)/2=(11+30+25)/2=33, площадьАВС=корень(р*(р-АВ)*(р-ВС)*(р-АС))=корень(33*22*3*8)=132, радиус=площадь/полупериметр=132/33=4
1)проведем радиус=оа,ов,ос 2)рассмотрим треуг. АОД,и треуг. ВОС. треуг.АОД т.к. ОА=ОД=радиусу,треуг. ВОС т.к. ОВ=ОС=радиусу 3)треуг. АОД=треуг. ВОС(по 1 признаку равенства треуг.) т.к. ОА=ОС,ОВ=ОД угол АОД=углу ВОС(вертек.) 4)из равенства треуг. следует что АД=ВС, ОК и ОЛ-высота проведенная к сторонам следовательно ОК=ОЛ
Всё решение в файле. Верно заметили товарищи модераторы, что я рассматривал частный случай. Решаем для общего: Соединяем концы хорд с центром окружности, получаем 2 треугольника. 1)Радиусы равны в любом случае, еще дано равенство хорд, значит, треугольники равны по 3 сторонам. Равноудаленность показывают равные высоты а если треугольники равны, то равны и их соответственные элементы, к высотам это так же относится. Ч.т.д. 2)Радиусы по-прежнему равны. Здесь рассматриваем уже прямоугольные треугольники, на которые разбивают высоты наших треугольников (они же биссектрисы и медианы в связи с тем, что треугольники равнобедренные). Получается, что все 4 треугольника равны между собой по гипотенузе (радиус) и катету (высоте), а значит, что и "большие" треугольники равны между собой, т.к. составляющие их геометрические фигуры соответственно равны. А это, в свою очередь, значит, что в этих треугольниках все соответственные элементы равны, в том числе и хорды окружности, ч.т.д.
треугольник АВС, АС=25, К- точка касания окружности на ВС, КС=22, ВК=8, ВС=ВК+КС=8+22=30, Н-точка касания на АС, КС=СН =22 - как касательные, проведенные из одной точки, АН=АС-СН=25-22=3, Л-точка касания на АВ, АН=АЛ=3- как касательные..., ВК=ВЛ=8-как касательные..., АВ=АЛ+ВЛ=3+8=11, поупериметр (р)=(АВ+ВС+АС)/2=(11+30+25)/2=33, площадьАВС=корень(р*(р-АВ)*(р-ВС)*(р-АС))=корень(33*22*3*8)=132, радиус=площадь/полупериметр=132/33=4