Кграфику функции f(x)=4x-x^2 проведены касательные в точках с абциссами х1=1 и х2=4 .найдите площадь треугольника, образованного этими касательными с осью ох
(Обозначения: E- середина AB, AF - высота к стороне BC, BD - медиана к стороне AC) 1) BD - медиана, высота и биссектриса (т.к. AB=BC), значит, AD=DC=5 В треугольнике ABD BD=√(AB∧2+AD∧2)=√(169-25)=12 BM=2/3 BD, BD=8 2) В треугольнике ABD AD/AB=O1D/O1B=5/13 O1B=13/18 BD=26/3 3 )ΔABD≈ΔOBE AB/BO=BD/BE 13/BO=12/6.5 (BE=AE=13/2=6.5) BO=(6.5*13)/12=169/24 4)cos C=DC/BC=5/13 В треугольнике AFC cos C=FC/AC⇒AC*5/13=50/13 BF=BC-CF=13-50/13=50/13 ΔABD≈ΔHBF; AB/BH=BD/BF⇒BH=(13*119)/13*12=119/12. P.S.(≈ - подобие треугольников)
Прямая параллельная плоскости тогда и только тогда, когда прямая не пересекается с плоскостью и параллельна некоторой прямой, лежащей в этой плоскости.
Прямая AD параллельна прямой BC, лежащей в плоскости BMC. Осталось доказать, что прямая AD не пересекается с BMC, то есть, не имеет с этой плоскостью общих точек. Очевидно, прямые AD и BC не имеют общих точек. Плоскости ABC и BMC пересекаются по прямой BC, то есть, все общие точки этих плоскостей лежат на ВС. Предположим, что AD пересекается с BMC в точке X, но тогда точка Х лежит как в плоскости ВМС, так и в плоскости АВС, поскольку прямая AD целиком лежит в плоскости ABC. Значит, точка Х - общая точка двух плоскостей, но тогда она лежит на прямой BC. Получили противоречие с тем, что прямые AD и BC общих точек не имеют. Значит, AD параллельна BMC.
Производная функции f(x)=4x-x^2 равна y' = 4 - 2x.
Находим уравнения касательных для точек х1 = 1 и х2 = 4.
х1 = 1. y'(1) = 4-2 = 2, y(1) = 4 - 1 = 3. yкас = 2(х - 1) + 3 = 2х + 1.
х2 =4. y'(1) = 4-8 = -4, y(1) = 16 - 16 = 0. yкас = -4(х - 4) + 0 = -4х + 16.
Находим координаты точки А пересечения касательной от х1 с осью Ох. 2х + 1 = 0, х = -1/2. Точка А((-1/2; 0).
Находим координаты точки В пересечения двух касательных между собой. 2х + 1 = -4х + 16, 6х =15, х = 15/6 = 5/2 = 2,5. у = 2*2,5 + 1 = 6.
Точка В((2,5; 6).
Находим координаты точки С пересечения касательной от х2 с осью Ох. -4х + 16 = 0, х = 16/4 = 4. Точка С((4; 0).
Так как основание треугольника совпадает с осью Ох, то его длина равна 4 - (-1/2) = 4,5.
Высота треугольника равна координате точки В по оси Оу, то есть 6.
Получаем ответ: S = (1/2)*4,5*6 = 13,5 кв.ед.