М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
botovaov
botovaov
26.01.2023 03:16 •  Геометрия

Вправильной треугольной усеченной пирамиде стороны оснований 5 и 7 , а боковое ребро наклонено под углом 45 к основанию. найти боковую поверхность пирамиды.

👇
Ответ:
asanali2288
asanali2288
26.01.2023
Усеченная пирамида АВСА1В1С1, в основаниях правильные треугольники АВС и А1В1С1, АС=7, А1С1=5, ОО1-высота пирамиды, О и О1 -центры треугольников, - пересечение высот=медиан=биссектрис, проводим высоты ВН и В1Н1, проводим апофему Н1Н, треугольник АВС, ВН=АС*корень3/2=7*корень3/2, треугольник А1В1С1, В1Н1=А1С1*корень3/2=5*корень3/2, при пересечении медианы делятся в отношении 2/1 начиная от вершины, ВО=2/3ВН=(2/3)*((7*корень3/2)=7*корень3/3, ОН=1/3ВН=(1/3)*(7*корень3/2)=7*корень3/6, треугольник А1В1С1, В1О1=2/3*В1Н1=(2/3)*(5*корень3/2)=5*корень3/3, О1Н1=1/2В1Н1=(1/3)*(5*корень3/2)=5*корень3/6, прямоугольная трапеция О1В1ВО, уголВ1ВО=45, проводим высоту В1К на ВО, ОО1В1К прямоугольник ОК=О1В1=5*корень3/3, КВ=ВО-ОК=7*корень3/3-5*корень3/3=2*корень3/3, треугольник КВ1В равнобедренный, угол КВ1В=90-45=45, КВ=В1К=О1О=2*корень3/3, рассматриваем прямоугольную трапецию О1ОНН1, проводим высоту Н1Т на ОН, ТН1О1О прямоугольник О1О=Н1Т=2*корень3/3, О1Н1=ОТ=5*корень3/6, НТ=ОН-ОТ=7*корень3/6-5*корень3/6=2*корень3/6, треугольник Н1Нт прямоугольный, Н1Н=корень(Н1Т в квадрате+НТ в квадрате)=корень(12/9+12/36)=корень(5/3), площадь боковой=1/2(периметрАВС+преиметрА1В1С1)*Н1Н=1/2*(3*7+3*5)*корень(5/3)=18*корень(5/3)=6*корень15
4,7(65 оценок)
Ответ:
Rayanachechenka
Rayanachechenka
26.01.2023
Обозначим вершины оснований нижнего АВС, верхнего соответственно А1В1С1. Проведем высоты треугольников АD и A1D1.Проведем ось симметрии (ось вращения) пирамиды О1О. ОтметимРассечем пополам пирамиду вертикальной плоскостью, проходящей через соответствующие высоты оснований. В сечении получим неравнобочную трапецию. Более длинная боковая сторона - это боковое ребро пирамиды, и угол между нею и большим основанием трапеции равен 45° (это угол между боковым ребром и плоскостью основания пирамиды). Более короткая боковая сторона пирамиды - это апофема боковой грани пирамиды. Основания трапеции - это высоты оснований, и они равны соответственно 5*√(3)/2 и 7*√(3)/2
 

Поскольку боковая грань пирамиды это тоже трапеция (равнобочная, но это не имеет значения), то эта апофема является высотой трапеции.
4,7(18 оценок)
Открыть все ответы
Ответ:
Irakli2007
Irakli2007
26.01.2023
Диагонали ромба в точке пересечения делятся пополам и образуют 4 равных прямоугольных треугольника(половинки диагоналей это катеты, а сторона ромба гипотенуза) , пусть a,b катеты,  с гипотенуза
Сумма катетов :
a+b= \frac{70}{2}
a+b=35
Также вспомним теорему Пифагора:
 a^2+b^2=c^2
 a^2+b^2=25^2
a^2+b^2=625
Объединим оба уравнения в систему:
\left \{ {{a^2+b^2=625} \atop {a+b=35}} \right.
Выразим из второго уравнения а (подстановка)
a=35-b
Подставим в первое уравнение
(35-b)^2+b^2=625
b^2-70b+1225+b^2=625
2b^2-70b+1225-625=0
2b^2-70b+600=0
b^2-35b+300=0
Это приведенное уравнение, решаем по т.Виета
\left \{ {{b_1*b_2=300} \atop {b_1+b_2=35}} \right.
b_1=15
b_2=20
Подставляем оба найденных корня в подстановку
a_1=35-15=20
a_2=35-20=15
Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей.
d_1=2*20=40
d_2=2*15=30
Площадь ромба можно найти по формуле:
S= \frac{d_1*d_2}{2}
S= \frac{30*40}{2}
S=30*20
S=600
4,5(57 оценок)
Ответ:
KoNetik2020
KoNetik2020
26.01.2023
1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6.
В трапеции ∠ВАС = ∠BCA  ⇒ и ∠ADE = ∠CED.
ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED).
2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE.
∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам.
3) Т.к.  ΔECF подобен ΔАВС, то EF/AC = CE/BC
EF/10 = 6/13  ⇒ EF = 60/13
4) Пусть h - высота треугольника АВС, опущенная на боковую сторону.
Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр
13h/2 = √(18 · 5 · 5 · 8)
13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60
h =120/13
5) AC║DF, значит, расстояние от точки А до DE  и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований.
Sade/Sdcf = DE/DF
DF = AC = 10 как противолежащие стороны параллелограмма,
DE = DF - EF = 10 - 60/13 = 70/13
Sade/Sdcf = (70/13) / 10 = 7/13
4,8(29 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ