Применим теорему Пифагора
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
ответ: Площадь равнобедренного треугольника составляет 48 см2
Площадь равнобедренного треугольника составляет 48 см²
Объяснение:
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
Рассмотрим боковой треугольник.
Надо найти связь между боковым ребром и стороной основания.
Обозначим их а и х соответственно.
По теореме косинусов x²= a²+a²- 2a·a·cos 30, отсюда х²=а²(2-√3)
Высота бокового треугольника (апофема) по теореме Пифагора l²= а²- х²/4/
Рассмотрим треугольник, сторонами которго является апофема, высота пирамиды и третья сторона соединияет их основания. Эта третья сторона половина стороны квадрата, т.е х/2
Тоже применим терему Пифагора а² -х²/4 = (√3)²+ х²/4,
х²/2=а²-3, х²=2а²-6.
приравняем правые части х². Это выражение и то что было выше и найдено по теореме косинусов.
2а² - 6 = а² (2-√3)
или а²(2-2+√3)=6, отсюда, найдем а²= 6:√3. Надо только выразить х².
объем пирамиды равен 1/3 х² ·√3= ... = 2-√3