да, все совершенно верно. если медианы равны, то он равнобедренный
Объяснение:
Пусть в треугольнике ABC медианы AD
И СЕ пересекаются в точке о(рис. 7). Рассмот-
рим треугольники AOE и COD. Поскольку точка
E E
D
оделит каждую из равных медиан АD и CE в
отношении 2:1, то AO = CO, EO = DO. Кроме
того, ZAOE = 2COD как вертикальные. Значит,
ДАОЕ = ДСОD по первому признаку. Отсюда
A
C С
следует AE = CD. Но по определению медианы
эти отрезки — половины сторон AB и CB. Следовательно, АВ = СВ,
т.е. треугольник ABC равнобедренный. Что и требовалось доказать.
60 градусов каждый угол треугольника АВД
Объяснение:
1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)