Диаметр окружности, вписанной в ромб, равен высоте ромба, а радиус, естественно, половине этой высоты. Радиус вписанной в ромб окружности можно найти по формуле r=S:рS — площадь ромба, где p — его полупериметр (p=2a, где a — сторона ромба) .Как известно, одна из формул площади ромба: площадь ромба равна половине произведения его диагоналей. S=d*D:2 Одна диагональ дана в условии, она равна 60 cм. Точкой пересечения диагонали ромба делятся пополам и образуют прямоугольные треугольники с гипотенузой 50 см, одним катетом 30см, второй предстоит найти. Сделать это можно по т.Пифагора, но получился египетский треугольник с отношением сторон 3:4:5. Отсюда ясно, что второй катет равен 40 см, и вся диагональ равна 40*2=80 см Площадь ромба d*D:2=60*80:2=240 см² r=S:р=240:(50*2)=24 см
1. По длинам сторон треугольники различают: - разносторонний, если все стороны различные; - равнобедренный, если две стороны равны. Равные стороны называются боковыми, а третья сторона - основанием; - равносторонний, если все стороны равны. Периметр треугольника - это сумма длин всех его сторон.
2. Смежными углами называются два угла, у которых одна сторона общая, а две другие дополняют друг друга до прямой. На рисунке ∠1 и ∠2 - смежные. Свойство смежных углов: Сумма смежных углов равна 180°. Доказательство: ∠АОВ = ∠1 + ∠2 ∠АОВ = 180°, так как этот угол развернутый, ⇒ ∠1 + ∠2 = 180°
Sосн=R²π=300π
R=√20²-10²=√300
Sбок=πrl=20√300π
Sпов.=300π+20√300π