Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Отношение Н/А = 5/7 - это синус угла наклона боковой грани к основе, второй катет этого треугольника равен ОВ = √(7²-5²) = √(49-25) =√24=2√6 - это в тех же единицах, что и Н и А (относительных).
Боковое ребро SB как гипотенуза входит в прямоугольный треугольник с Н и частью медианы основы, равной 2*ОВ = 4√6. Тогда
SB=√(5²+(4√6)²) = √(25+96)=√121 = 11.
Отсюда угол наклона бокового ребра к плоскоcти основания пирамиды равен arc sin 5/11 = 27,0357°