Решить. в правильной четырёхугольной пирамиде апофема образует с плоскостью основания угол 30 гр. сторона основания пирамиды равна 12 см. найти площадь поверхности пирамиды.
Периметр-сумма всех сторон,значит а)60-(13*2)=60-26=34, значит 34:2=17-вторая сторона параллелограмма (ответ:13 и 17) б)пусть х-сторона параллелограмма,значит получим уравнение Х+Х+(4+Х)+(4+Х)=60, отсюда выразим х. 4Х=60-8, Х=13 -одна сторона, х+4=13+4=17- другая сторона. (ответ: 13 и 17) в) пусть Х-сторона параллелограмма, тогда Х+Х+3Х+3Х=60, отсюда х=7.5- одна сторона, другая сторона 3х= 3* 7,5=22.5. (ответ:7.5 и 22.5) г)пусть х и у -стороны параллелограмма,тогда составим систему Х+У=7 И 2Х+2У=60,решим систему и получим у = 11,5, х= 18.5.(ответ:11.5 и 18.5) д) решение такое же как и у задачи №3.
ОЕ = AD/2 = 12/2 = 6 cм
Апофема SE = OE/cos 30° = 6/(√3/2) = 4√3 см
Площадь боковой грани: SΔ = 1/2·12·4√3 = 24√3 cм²
Sбок. = 4·SΔ = 4·24√3 = 96√3 cм²
Площадь поверхности пирамиды: S = Sосн. + Sбок. = 144 + 96√3 cм²