Угол обозначается или одной буквой или цифрой, поставленной при вершине угла, например угол A или угол 1, или тремя буквами, из которых одна стоит при его вершине, а две другие при каких-либо точках его сторон. Любой угол делит плоскость на две области. Одна область обычно называется внутренней, а другая внешней. Внутренняя область угла – это часть плоскости, расположенная между сторонами рассматриваемого угла:Внешняя область угла – это часть плоскости, которая не принадлежит рассматриваемому углу.
В равнобедренном треугольнике АВС с основанием АС, ВН - высота. Найдите ВН, если периметр треугольника АВС равен 48 см,
а периметр треугольника ВНС равен 32 см.
ответ или решение1
Так как треугольник ABC равнобедренный и его периметр равен 48, значит AB = BC, а AC = 48 - 2BC.
Высота BH делит AC пополам, соответственно, AH = HC = (48 - 2BC) / 2.
Периметр
треугольника BHC равен 32 см.
Составляем уравнение:
BC + (48 - 2BC) / 2 + BH = 32;
Решаем уравнение:
2BC / 2 + (48 - 2BC) / 2 + BH = 32;
(2BC + 48 - 2BC) / 2 + BH = 32;
48 / 2+BH = 32;
24 + BH = 32;
BH = 32-24;
BH = 8
ответ: длина высоты BH равна 8 сантиметра.
1. Правильный четырехугольник - квадрат. Радиус описанной около квадрата окружности равен половине диагонали.
Если а - сторона квадрата, d - диагональ и R - радиус описанной окружности, то
d = a√2 = 20√2.
R = d/2 = 10√2
2. Центр окружности, описанной около прямоугольника, лежит в точке пересечения его диагоналей. Диагонали прямоугольника равны и являются диаметрами окружности.
По теореме Пифагора:
d = √(12² + 5²) = √(144 + 25) = √169 = 13 см
Длина окружности:
C = πd = 13π см
3. ∠KOD = 30° - центральный угол, значит и градусная мера соответствующей ему дуги тоже 30°.
∪ DK = 30°
∠МОК = 180° ⇒ ∪ MTK = 180°,
∪ MD = 360° - 180° - 30° = 150°
Длина дуги находится по формуле:
С = 2πR · α / 360°
С_dk = 2π · 5 · 30° / 360° = 5π/6 см
C_mtk = 2π · 5 · 180° / 360° = 5π см
C_md = 2π · 5 · 150° / 360° = 25π/6 см
4. Радиус окружности, описанной около правильного шестиугольника, равен стороне шестиугольника:
R = a = 12 см
Центральный угол правильного шестиугольника:
α = 360° / 6 = 60°
Площадь кругового сектора:
S = πR² · α / 360°
S = π · 144 · 60° / 360° = 24π см²