№1
Рассмотрим треугольники FMN и FNK. Эти треугольники равны по первому признаку равенства треугольников(по двум сторонам и углу между ними). Сторона FK-общая,
сторона FM=NK, докажем это - по условию EF=EK (треугольник равобедренный), М-середина стороны EF, значит FM=1/2EF, N-середина ЕК, значит NK=1/2ЕК, значит FM=NK, а угол F=К, так треугольник FEK равнобедренный, то углы при основании равны. А так треугольники равны, то и все стороны у треугольников равны (третий признак равенства), значит сторона FN=KM
№2
В этой задачи перепроверь, что надо доказать, треугольника ЕРЕ не существует, уточни условие и я дорешаю.
В треугольнике ABC AC=CB=10см, угол A=30 градусов, BK- перпендикуляр у плоскости треугольника и равен 5 см. Найти расстояние от K до AC
Рассмотрим образованную пирамиду АВСК. КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС. По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН.
Рассмотрим основание пирамиды - треугольник АВС. Он равнобедренный АС=ВС=10, с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ - СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ - прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см) . По теореме Пифагора найдем второй катет СМ:
CM=sqrt(AC2-AM2)
CM=sqrt(100-25)=sqrt75=5sqrt3
BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны:
АН/АМ=НВ/МС=АВ/АС
НВ/МС=АВ/АС
НВ=МС*АВ/АС
НВ=5*(2*5sqrt3)/10=5sqrt3
Треугольник КНВ - прямоугольный (КВ перпендикулярно плоскости АВС) . По теореме Пифагора найдем КН:
KH2=KB2+HB2
KH=sqrt(25+75)=sqrt100=10 (см)
l=2πR ⇒ R=24π/2π=12 см
угловая мера окружности 360°, т.е. 45° составляют от длины дуги окр. 360/45=8, длина дуги соответствующая центральному углу , равному 45° =12/8=1,5 см