Треугольник прямоугольный (по обратной теореме Пифагора), поэтому его площадь равна S=8*6/2=24 см^2, полупериметр равен р=(6+8+10)/2=3+4+5=12 см. r=S/p=24/12=2 см. ответ: r=2 см.
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Касательная к окружности- прямая имеющая одну общую точку с окружностью (следовательно её не пересекает) касательная всегда перпендикулярна радиусу из указанных сторон треугольника сразу видно что этот треугольник прямоугольный (по пифагору: 25=16+9) с прямым углом в. протяжённость вс по условию 3, центр окружности с, радиус =3, следовательно вс-радиус из прямоугольности треугоугольника выходит что вс перпендикулярен ав , тобишь ав перпендикулярно радиусу и имеет с окружностью только одну общую точку в, следовательно ав-касательная