Доказательство в объяснении.
Объяснени
Треугольники АВМ и КСD равны по двум сторонам (АВ = CD, как противоположные сьороны параллелограмма ABCD, АМ = КС, как половины равных сторон BC и AD параллелограмма ABCD) и углу между ними (∠А = ∠С, как противоположные углы параллелограмма ABCD). Из равенства треугольников ВМ = KD.
Тогда четырехугольник BKDM - параллелограмм по признаку: "Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм", твк как ВК = MD (половины равных сторон AD и ВС), а ВМ = KD - доказано выше.
В параллелограмме BKDM диагонали точкой пересечения делятся пополам (свойство), что и требовалось доказать.
Доказательство в объяснении.
Объяснени
Треугольники АВМ и КСD равны по двум сторонам (АВ = CD, как противоположные сьороны параллелограмма ABCD, АМ = КС, как половины равных сторон BC и AD параллелограмма ABCD) и углу между ними (∠А = ∠С, как противоположные углы параллелограмма ABCD). Из равенства треугольников ВМ = KD.
Тогда четырехугольник BKDM - параллелограмм по признаку: "Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм", твк как ВК = MD (половины равных сторон AD и ВС), а ВМ = KD - доказано выше.
В параллелограмме BKDM диагонали точкой пересечения делятся пополам (свойство), что и требовалось доказать.
ну смотри чертеж делаем получается так что угол бма равен 45 а по отношению к углу мас он соответственный, а так как из угла а выходила медиана то он разделен по полам а так как мы нашли мас а он равен 45 то угл бас равен 2 угла мас треугольник правильно начинать нумеровать с левого нижнего края чтобы рисунок был под мое решение