Площадь боковой поверхности правильной четырехугольной пирамиды равна s, а расстояние от центра основания до боковых граней - d.найдите объем пирамиды.
Разобьем нашу большую пирамиду двумя диагональными сечениями на 4 маленькие пирамиды, раз диагонали квадрата пересекаются в его центре, то расстояния от центра основания до боковых граней будут высотами наших маленьких пирамид, боковые грани большой пирамиды примем за основания маленьких пирамид, так как пирамида правильная, то все боковые грани равные и значит площадь одной боковой грани =S/4 тогда объем одной маленькой пирамиды: Vm = d * S/4 * 1/3 = dS/12 а раз большая пирамида состоит из 4-ех маленьких пирамид, то ее объем V = Vm*4 = 4 dS/12 = dS/3
В рассуждениях нужно использовать признаки делимости... кратное 18 ---> оно делится на 2 и на 9 т.е. оно четное --- заканчивается на 0 или 2 или 4 или 6 или 8 и сумма цифр числа делится на 9 (это признак делимости на 9))) получим варианты: a b с d 0 a b с d 2 a b с d 4 a b с d 6 a b с d 8 и теперь второе условие: соседние цифры отличаются на 2 для первого варианта: a b с 2 0, a b 0 2 0 или a b 4 2 0 a+b+2 = 9 или a+b+4+2 = 9 a+b = 7 a+b = 3 ---> 12420, например 18 * 690 = 12420 но, первые цифры не на 2 отличаются... не получилось... но смысл рассуждений такой же))) пробуем еще... у меня получилось: 24246 / 18 = 1347 можно попробовать и еще найти...
Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
тогда объем одной маленькой пирамиды: Vm = d * S/4 * 1/3 = dS/12
а раз большая пирамида состоит из 4-ех маленьких пирамид, то ее объем
V = Vm*4 = 4 dS/12 = dS/3