ломаная - это фигура, не лежащая на одной прямой.
звенья - это отрезки, из которых составлена ломаная.
концы отрезков - вершины ломаной
длина ломаной - сумма длин всех звеньев.
2. многоугольник - это фигура, состоящие из замкнутой ломаной.
сторона - один отрезок многоугольника
диагональ - отрезок соединяющий две любые не соседние вершины.
вершина - место пересечений линий в многоугольнике
периметр - длина ломаной.
3. выпуклый многоугольник - это мнгоугольник, который лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.
4. (n -2) . 1800
n - кол- во углов
5. стр. 99 так как сумма углов выпуклого n-угольника равна (n-2)*180˚, то сумма углов четырёхугольника равна 360˚
6.
7. параллелограмм - это четырёхугольник, у которого противолежащие стороны попарно параллельны. является выпуклым четырехугольником.
8-9
для параллелограмма верно свойство: противолежащие стороны попарно равны.
а еще есть признак параллелограма: если в четырехугольнике противолежащие стороны попарно равны, то он паралеллограмм.
10 - 101-102
11. трапеция - четырёхугольник у которого две стороны параллельны а две другие не параллельны
стороны - основания и боковые стороны.
12 трапеция, у которой боковые стороны равны между собой, называется равнобедренной.
трапеция, один из углов которой прямой, называется прямоугольной.
14 прямоугольник - это паралелограмм, у которого все углы прямые
док-во на стр. 108
14 стр. 108
15. ромб - это паралелограмм, у которого все стороны равны. док-во - стр. 109.
17.квадрат - прямоугольник, у которого все стороны равны.
18 две точки называются симметричными относительно прямой а, если это прямая проходит через середину отрезка и перпендикулярна к нему.
19. фигура называется симметричной относительно прямой а, если каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре.
20. две точки называются симметричными относительно точки о, если о - середина отрезка.
21.фигура называется симметричной относительной точки о, если каждой точки фигуры симметричная ей точка относительно точки о также принадлежит этой фигуре.
АС = АО * 2 = 13 * 2 = 26
По условию АВ : ВС = 5 : 12. Выразим сторону АВ как 5х, а сторону ВС как 12х.
Для прямоугольного треугольника АВС по теореме Пифагора запишем:
АВ² + ВС² = АС²
25х² + 144х² = 26²
169х² = 676
х²= 4
х = 2
Значит АВ = CD = 5*2 = 10, ВС = AD = 12*2 = 24