ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
1 решение: угол А= углу В= 52°; угол С равен 76°
2 решение: угол А= углу В = 68°; угол С равен 44°
Объяснение:
решение 1
угол А и угол В равны ( по св-ву р/б треугольника следует, что углы, лежащие у его основания равны) => ни один из этих углов не может быть больше или меньше друг друга => угол С будет иметь разность с углами А и В, т. е. он может быть больше на 24° и меньше (получается, что задача имеет два решения, тк что угол А или В могут быть больше угла С, что он может быть больше угла А или В).по сумме углов трекгольника следует, что:180°-2x=x+24° (за х мы обозначили равные углы А и В, а 24° это то, насколько угол С больше углов А и В)180°-3х=24°х=(180°-24°):3 = 156°:3=52° х+24°=52°+24°=76° (это угол С в том решении, когда он больше А и В на 24°)
решение 2
180-2x=x-24
180-3x=-24
=>3x= 180°+24°=204°=>x=204°:3=68°(это у нас будут углы А и В, тк во втором решени они будут на 24° больше, чем С)
по сумме углов т-ка:
180-(68+68)=180-136=44°( это у нас С)
AC=2*MN=2*6=12