М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

5. треугольник abc — равнобедренный с основанием ас. на его биссектрисе bd взята точка м, а на основании — точка к, причем, мк || ав. найдите углы треугольника mkd, если abc = 126°, bac = 27°(без рисунка) 6. докажите, что на рисунке прямые ав и kn параллельны, если треугольник авк — равнобедренный с основанием вк, а луч kb является биссектрисой угла akn.

👇
Ответ:
Manasyan85140
Manasyan85140
22.08.2020
Дано: треуг. MKN, А принадлежит МК, В принадлежит MN. Треуг АВК равнобедренный, АК=АВ. КВ-биссектриса АКN. Доказать, что АВ II KN.Доказательство:Так как КВ-биссектриса MKN, то угол МКВ=BKN, и так как треуг. КАВ равнобедренный с основанием КВ, то углы при основании равны АКВ=АВК. Отсюда следует, что АВК=BKN, а эти углы являются накрест лежащими при прямых АВ и KN и секущей ВК. Если накрест лежащие углы равны, то прямые АВ и КN параллельны. Доказано.
4,7(32 оценок)
Открыть все ответы
Ответ:

Вопрос не совсем понятен, но определим длины векторов:

Модуль вектора |ab|=√[(Xb-Xa)²+(Yb-Ya)²] или |ab|=√[(-2+4)²+(4-1)²]=√13.

Модуль вектора |bc|=√[(Xc-Xb)²+(Yc-Yb)²] или bc|=√[(2+2)²+(5-4)²]=√17.

Модуль вектора |cd|=√[(Xd-Xc)²+(Yd-Yc)²] или |cd|=√[(0-2)²+(2-5)²]=√13.

Модуль вектора |ad|=√[(Xd-Xa)²+(Yd-Ya)²] или |ad|=√[(0+4)²+(2-1)²]=√17.

Модуль вектора |ac|=√[(Xc-Xa)²+(Yc-Ya)²] или |ac|=√[(2+4)²+(5-1)²]=√52.

Модуль вектора |bd|=√[(Xd-Xb)²+(Yd-Yb)²] или |bd|=√[(0+2)²+(2-4)²]=√8.

Верные равенства:

Равны МОДУЛИ векторов |AB|=|CD| и |BC|=|AD|,

а так как равные вектора это сонаправленные вектора, с равными модулями, то

равны вектора АВ=DС, BA=CD, CB=DA и BC=AD.

4,6(17 оценок)
Ответ:

Пирамида правильная, значит в основании квадрат. Обозначим пирамиду SАВСД. S -вершина. Проведём диагонали АС и ВД. В квадрате диагональ равна (а корней из2).  Где а -сторона квадрата. По условию а=1,тогда АС=ВД= корень из 2. Расстояние между SВ и АС это перпендикуляр ОК  из точки пересечения диагоналей О к ВS. Рассмотрим треугольник SВО( можно нарисовать отдельно). Это прямоугольный треугольник, у которого гипотенуза SВ=1(ребро пирамиды), катет  ВО=ВД/2=(корень из 2 )/2. Второй катет SО это высота пирамиды. SО= корень из (ВSквадрат-ВОквадрат)=корень из (1-2/4)=(корень из 2)/2. Площадь треугольника Ssво=1/2*ВО*SО, она также равна Ssво=1/2*ВS*ОК. Приравнивая оба этих выражения, получим  1/2*(корень из 2)/2*(корень из 2)/2=1/2*1*ОК. Отсюда искомое расстояние ОК=1/2.

4,5(82 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ